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Limitations of LQCD – Why changing the gauge action?
Main problem for studies of the QCD phase diagram:

I Simulating QCD at (real) non-zero chemical potential. (sign problem)

Possible solutions:

I Use complex Langevin for simulations.
[ Parisi, PLB 131 (1983); Aarts, Stamatescu, JHEP 0809 (2008); Sexty, arXiv:1307.7748 ]

I Simulate on a Lefschetz thimble? [ Christoforetti et al, PRD 86 (2012); PRD 88 (2013) ]

I Dual variables and worm algorithms
[ e.g. Delgado Mercado et al, PRL 111 (2013), Gattringer, Lattice 2013 ]

I Fermion bags [ e.g. Chandrasekharan, EPJA 49 (2013) ]

Often it is the gauge action which makes it difficult to find solutions.
(see e.g. strong coupling solution to sign problem [ Karsch, Mütter, NPB 313 (1989) ] )

Idea: Find an alternative discretisation of pure gauge theory which allows the
use of strong coupling methods!

⇒ A gauge action which is linear in the gauge fields might do this job!
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Induced QCD

This idea is not new!

Ansatz: Induce pure gauge dynamics using auxiliary fields.

I Using fermionic fields:

I with standard (Wilson) fermions. [ Hamber, PLB 126 (1983) ]

I Standard fermions + 4-fermion current-current interaction.
[ Hasenfratz, Hasenfratz, PLB 297 (1992) ]

Need the limit Nf →∞, κ→ 0.

I Using scalar fields:

I Spin model. [ Bander, PLB 126 (1983) ]

Needs the limit Ns →∞ and gs →∞.
I Adjoint scalar fields. [ Kazakov, Migdal, NPB 397 (1992) ]

No “exact” pure gauge limit.
It is interesting since it allows a solution in terms of large NC .

⇒ This is where our induced model offers improvement!
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Lattice regularised path integrals – fixing notations

Expectation value of operator O:

〈O〉 =
1

Z

∫
[dU][dψ][dψ̄] O ωG [U] ωF [ψ, ψ̄,U]

I ωG [U]: Pure gauge weight factor.

I ωF [ψ, ψ̄,U]: Quark weight factor.

Typically: ωG [U] ωF [ψ, ψ̄,U] = exp
[
−S [ψ, ψ̄,U]

]
.

Basic demands:

I The discretised action has to reproduce the continuum Yang-Mills action.

I All weight factors should be gauge invariant.
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The new weight factor

Zirnbauer’s weight factor

Consider the weight factor: [ Budczies, Zirnbauer, math-ph/0305058 ]

ωBZ[U] ∼
∏
p

∣∣∣det
(
m4

BZ − Up

)∣∣∣−2Nb

Here:

I p is an index running over unoriented plaquettes Up.

I mBZ is a real parameter with mBZ ≥ 1
(or more generally mBZ ∈ C with Re(mBZ) ≥ 1)

I Nb is an integer number

I we consider a hypercubic lattice

Does this weight factor have anything to do with continuum Yang-Mills theory?

Why is this weight factor interesting?
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The new weight factor

Non-trivial pure gauge limit
There is a trivial pure gauge limit for αBZ (= m−4

BZ) → 0 Nb →∞.
(I will not discuss this here)

Zirnbauers conjecture: [ Budczies, Zirnbauer, math-ph/0305058 ]

At fixed Nb ≥ Nc and d ≥ 2 the theory has a continuum limit for αBZ → 1
which reproduces continuum Yang-Mills theory.

(excluding the case d = 2 and Nb = Nc)

I This can be shown rigorously for d = 2 and Nb > Nc .

The proof for U(Nc) is given in [ math-ph/0305058 ] .

It is straightforwardly extended to SU(Nc).
(we will not go through the details here)
(probably Nb > Nc − 1 is sufficient for SU(Nc))

I For d > 2 the equivalence with Yang-Mills theory is only a conjecture and
relies on the increase of the collective behaviour when going to d > 2.
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Phases in the (Nb, αBZ) parameter space
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⇒ We will now test this limit numerically!
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Numerical tests

Basic idea and setup

Consider the cheap case: SU(2) at d = 3!

Suitable observables for a first test:

I T = 0 observables:
Quantities connected with the qq̄ potential.

I T 6= 0 observables:
Transition temperature and order of the transition.

Simulation setup:

I Wilson theory: Standard mixture of heatbath and overrelaxation updates.

I Induced theory: Local metropolis with random link proposal.

I Computation of qq̄ potential: Lüscher-Weisz algorithm
[ Lüscher, Weisz, JHEP 0109 (2010) ]

I Scale setting: Sommer parameter r0

[ Sommer, NPB 411 (1994) ]



Induced QCD with Nc auxiliary bosonic fields

Numerical tests

Scale setting and matching

First step: Matching between α (∼ m−4) and β.

I Start with some information from 〈Up〉.
I Compute r0 in the interesting region:

⇒ Matching (Nb = 2): β(α) =
2.47(1)

1− α − 2.70(3)

Second step:
Simulate at similar lattice spacings and look at the static potential.

I Compare to high precision results obtained with the Wilson action.
[ BB, PoS EPS-HEP (2013) ]

I Here we use the prediction for the potential of an effective string theory
for the flux tube as a method to look at its subleading properties.
⇒ There are two non-universal parameters, σ and b̄2 (boundary coeff.).

I An agreement of b̄2 means that the potential is identical up to 4-5
significant digits!
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Numerical tests

Results for b̄2

First result:
√
σ r0 is equivalent in both theories!

Results for b̄2:

-0.045
-0.04

-0.035
-0.03

-0.025
-0.02

-0.015
-0.01

-0.005
0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

b 2
√

σ
3

(a/r0)
2

SU(2), Nb = 2
SU(2), [BB (2011)]
SU(2), [BB (2013)]
SU(3), [BB (2014)]

⇒ All results are in excellent agreement!
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Numerical tests

Finite T properties

For T = 0 quantities comparison looks good!

So what about the finite temperature transition?

I For SU(2) and d = 3:

Second order phase transition in the 2d Ising universality class.
[ Engels et al, NPPS 53 (1997) ]

I We will test this at Nt = 4 first!

⇒ Nt = 6 is in progress.

I Scale setting via r0 and the mapping obtained at T = 0.
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Numerical tests

Phase transition at Nt = 4

Polyakov loop expectation value:
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Numerical tests
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Numerical tests

Phase transition at Nt = 4
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Numerical tests

Phase transition at Nt = 4

Polyakov loop susceptibility:
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Numerical tests
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Numerical tests

Phase transition at Nt = 4

Fit: ln(χL) = C + γ/ν ln(Ns)
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Result for critical exponents: γ/ν = 1.74(2)(9)

Black point: γ/ν = 1.70(4) (WPG) [ Engels et al, NPPS 53 (1997) ]
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Dual representation

The bosonic version
Now: Why is this weight factor interesting?

Bosonisation of the determinant: [ Budczies, Zirnbauer, math-ph/0305058 ]

ωBZ[U] =
∏
p

∣∣∣det
(
m4

BZ − Up

)∣∣∣−2Nb

=

∫
[dφ] exp

{
−SBZ[φ, φ̄,U]

}
SBZ[φ, φ̄,U] =

Nb∑
b=1

∑
±p

4∑
j=1

[
mBZ φ̄b,p(xj )φb,p(xj )− φ̄b,p(xj+1) U(xj+1, xj ) φb,p(xj )

]
I φ are complex scalar fields

I p: index for oriented plaquette

I Scalar fields carry plaquette index p.
⇒ Propagate only locally opposite to the

plaquette orientation.

I Gauge field only couples to bosons.
⇒ Can be modified more easily!

I Nb defines the number of boson fields.
U(x+p

2 , x+p
1 )

+p

−p

x±p
1 x+p

2 /x−p
4

x+p
3 /x−p

3x+p
4 /x−p

2
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Dual representation

Modified version

Problem: This action is complex!

Solution: Rewrite determinant weight factor:

ωBZ[U] ∼
∏

p

[
det
(
m4

BZ − Up
)

det
(
m4

BZ − U†p
)]−Nb

∼
∏

p

[
det
(
m̃ −

{
Up + U†p

})]−Nb

Now bosonize this determinant:

⇒ Real action:

SB [φ, φ̄,U] =

Nb∑
b=1

∑
p

4∑
j=1

[
m φ̄b,p(xj)φb,p(xj)− φ̄b,p(xj+1) U(xj+1, xj) φb,p(xj)

−φ̄b,p(xj) U(xj , xj+1) φb,p(xj+1)
]

Here: m̃ = m4
BZ + m−4

BZ and m̃ = m4 − 4 m2 + 2.
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Dual representation

Integration over gauge fields

First step: Integration over the gauge degrees of freedom.

Rewrite the partition function as a product of Itzykson-Zuber integrals:

Z =

∫
d [φ] F [φ, φ̄]

∏
x,µ

∫
dUµ(x) e

1
2

Tr[Uµ(x) Vµ(x)[φ,φ̄]+U†
µ(x) V†

µ(x)[φ,φ̄]]

With F [φ, φ̄] = exp

−
Nb∑
b=1

∑
p

4∑
j=1

m φ̄b,p(xj )φb,p(xj )


and Vµ(x)[φ, φ̄] = 2

Nb∑
b=1

∑
ν 6=µ

[
φb,p̄(x,µ,ν)(xj̄(µ,ν,0,1))φ̄b,p̄(x,µ,ν)(xj̄(µ,ν,0,0))

+φb,p̄(x−ν̂,µ,ν)(xj̄(µ,ν,1,1))φ̄b,p̄(x−ν̂,µ,ν)(xj̄(µ,ν,1,0))
]



Induced QCD with Nc auxiliary bosonic fields

Dual representation

Integration over gauge fields – IZ integrals

Need to solve integrals I =

∫
dU eTr[U V+U† V†] .

For U(Nc) they are known. [ e.g. Brower, Rossi, Tan, PRD23 (1981) ]

For SU(Nc): ⇒ I ∼ 1

∆(λ2)

∞∑
ξ=0

εξ cos(ξ ϕ) det (Aξ(λ))

I εξ: Neumann’s factor; εξ =

{
1 forξ = 0
2 forξ > 0

I ϕ: Phase of the determinant det(V)

I λ2
i : eigenvalues of the Nc × Nc matrix 1

4
VV†

I ∆(λ2): Vandermonde determinant

I Aξ(λ): Nc × Nc matrix; (Aξ(λ))ij = λj−1
i Iξ+j−1(λi )

with Im(z) modified Bessel function of the first kind (and z ∈ R).

⇒ Looks difficult, but the sum in I converges numerically very fast.
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Dual representation

Full QCD

Now consider also fermionic fields, e.g. with a staggered type action:

SF =
∑
x

{∑
µ

[
ψ̄(x)αµ(x)Uµ(x)ψ(x + µ̂) + ψ̄(x + µ̂)α̃µ(x)U†µ(x)ψ(x)

]
+mqψ̄(x)ψ(x)

}
Most promissing idea: Expand weight factor exp(−SF ) in grassmann variables.

I Introduce dual variables bµ,ab(x), b†µ,ab(x) and na(x).

I Integral over grassmann fields leads to constraints for those variables.

I Integrate out the gauge fields.

Resulting dual partition function:

Zdual =
∑

(~b,~b†,~n)

I
(~b,~b†,~n)

mNm
q

∫
[dφ̄][dφ] F

(
φ, φ̄

)∏
x,µ

w(b(x , µ), b†(x , µ), ∂A) Iµ(x , φ, φ̄)

Problem: The dual theory has a sign problem!
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Summary and Perspectives

I We have investigated a possible alternative discretisation of continuum
pure gauge theory.

I While for d = 2 it can be shown that the theory has the correct
continuum limit this is not guaranteed if d > 2.

I Numerical tests show good agreement with simulations using Wilson’s
gauge action, both for T = 0 and T 6= 0.

I In its original formulation with auxiliary boson fields the theory has a sign
problem. ⇒ We introduced a modified version without sign problem.

I Pass to a dual theory via a direct integration over gauge fields:

I Leads to a theory formulated in terms of auxiliary bosonic fields.
I When fermions are include one can expand the action in grassmann

variables and integrate over the fermionic degrees of freedom and the
gauge fields.

I However, the resulting dual representation has a sign problem.
I Is it possible to find a formulation without sign problem?

I Explore other analytical methods ...
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Thank you for your attention!
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